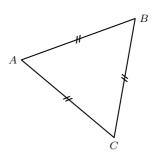
Un triangle $\acute{e}quilat\acute{e}ral$ est un triangle qui a ses trois côtés de même longueur.



Remarque.

Un triangle équilatéral ABC est un triangle isocèle particulier : il est isocèle en A et sa base [BC] est de même longueur que les autres côtés (et cela fonctionne aussi avec les autres sommets).

c) Construire des triangles

Proposition.

Un triangle peut être construit si l'on est dans l'un des trois cas suivants :

- on connaît les longueurs des trois côtés;
- on connaît la mesure d'un angle et les longueurs des deux côtés qui le bordent;
- on connaît un côté et deux angles qui le bordent.

Ce qui suit n'est pas à recopier mais à lire plusieurs fois et à comprendre.

Méthode. Trois longueurs.

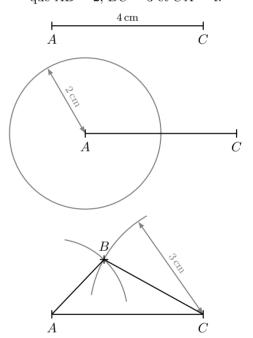
Si l'on connaît les longueurs des trois côtés :

1. on trace d'abord un côté (par exemple le plus \log);

2. on reporte la mesure d'un deuxième côté avec le compas;

3. on reporte la mesure du troisième côté avec son compas, on relie le point obtenu aux points existants, c'est fini.

Exemple : construire le triangle ABC tel que AB = 2, BC = 3 et CA = 4.

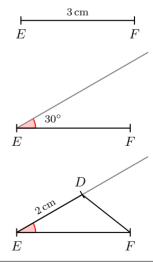


Méthode. Deux longueurs et un angle.

Si l'on connaît un angle et les longueurs des deux côtés qui le bordent :

- 1. on trace d'abord un côté (par exemple le plus long);
- $2.\,$ on construit l'angle que l'on connaı̂t ;
- 3. on reporte la mesure du deuxième côté connu, on trace le côté absent, c'est fini.

Exemple : construire le triangle DEF tel que DE = 2, EF = 3 et $\widehat{DEF} = 30^{\circ}$.



Méthode. Une longueur et deux angles.

Si l'on connaît la longueur d'un côté et les mesures des deux angles qui le bordent :

- $1. \ \, {\rm on \ trace \ d'abord \ le \ c\^{o}t\'{e} \ connu} \, ;$
- 2. on construit les angles;
- 3. l'intersection des nouveaux côtés des angles fournit le troisième point, c'est fini.

Exemple : construire le triangle GHI tel que GH = 3, $\widehat{GHI} = 60^{\circ}$ et $\widehat{IGH} = 30^{\circ}$.

