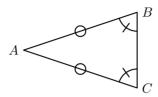
5) Addenda: angles dans les triangles particuliers


a) Triangle isocèle

Propriété.

Dans un triangle isocèle, les angles qui bordent la base sont de même mesure.

Exemple.

Sur la figure suivante, le triangle ABC est isocèle en A.

Les angles \widehat{ABC} et \widehat{BCA} sont de même mesure.

Propriété.

Si un triangle a deux angles de même mesure, alors il est isocèle.

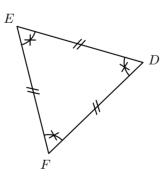
Ne pas écrire ça

Les deux propriétés précédentes ne signifient pas la même chose. La première indique que si l'on a un triangle isocèle, alors il a deux angles égaux.

La deuxième indique que **si** un triangle a deux angles égaux, **alors** il est isocèle. C'est ce qu'on appelle deux propositions **réciproques** l'une de l'autre.

Remarque.

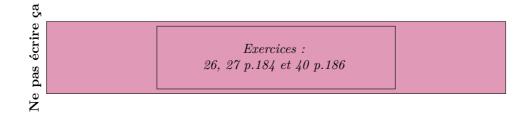
Dans un triangle isocèle, si l'on connaît l'un des angles, alors on connaît les trois.


b) Triangle équilatéral

Propriété.

Dans un triangle équilatéral, les trois angles sont égaux à $60^{\circ}.$

Exemple.


Le triangle DEF suivant est équilatéral.

Les angles \widehat{DEF} , \widehat{EFD} et \widehat{FDE} sont de même mesure. Comme leur somme est égale à 180° , alors ils mesurent chacun $\frac{180^\circ}{3} = 60^\circ$.

Propriété.

Si un triangle a deux angles de 60° , alors il est équilatéral.

