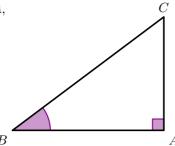
Nous allons apprendre à utiliser trois objets, appelés fonctions trigonométriques, sin, cos et tan. Ces objets s'utilisent sur les angles aigus d'un triangle

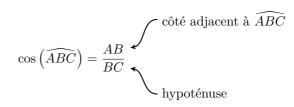
2) Cosinus d'un angle aigu dans un triangle rectangle

Définition.

Dans un triangle ABC rectangle en A,



le cosinus de l'angle aigu \overrightarrow{ABC} se note $cos(\overrightarrow{ABC})$ et on a :



Remarque — Notations.

• Quand la figure étudiée est aussi simple qu'un triangle rectangle, on peut simplifier l'écriture des angles : plutôt qu'écrire ABC, nous écrirons seulement B.

C'est plus simple, mais attention, ce n'est valable que quand on a bien précisé dans quel triangle on travaillait!

• Il n'est pas obligé d'écrire les parenthèses après cos . Ainsi, à la place d'écrire cos $(\widehat{A}\widehat{BC})$, on peut

Utilisation.

Le cosinus s'utilise de deux façons dans les problèmes :

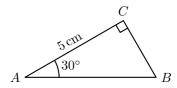
- calculer un angle à partir de deux côtés (l'adjacent à l'angle et l'hypoténuse) d'un triangle rectangle;
- calculer un côté à partir d'un angle et d'un côté (l'adjacent ou l'hypoténuse) dans un triangle rectangle.

Exercice corrigé 1.

Énoncé

Dans le triangle ABC rectangle en C ci-contre, on a $AC=5\,\mathrm{cm}$ et $CAB = 30^{\circ}$.

Quelle est la longueur AB?



Avant de parler de cosinus, il est nécessaire de rappeler que l'on est dans un triangle rectangle.

Dans le triangle ABC rectangle en B, on a : $\cos \hat{A} = \frac{AC}{AB}$

 \leftarrow on écrit l'égalité

c'est-à-dire $\cos{(30^\circ)}=\frac{5}{AB}$ d'où $\frac{\sqrt{3}}{2}=\frac{5}{AB}$

 \leftarrow on remplace par les données connues

 \leftarrow on calcule le cosinus

On calcule AB grâce aux produits en croix :

$$AB = \frac{5 \times 2}{\sqrt{3}} = \boxed{\frac{10}{\sqrt{3}}} \, \mathrm{cm} \simeq \boxed{\frac{5,77 \, \mathrm{cm}}{\text{valeur approchée}}}$$

emarque

Ici, $\cos(30^\circ)$ a une valeur exacte : $\cos(30^\circ) = \frac{\sqrt{3}}{2}$.

Cependant, la plupart du temps, le cosinus d'un angle « précis » (en degrés) donne une valeur avec beaucoup de décimales, il convient donc de prendre une valeur approchée : $\frac{\sqrt{3}}{2} \simeq 0.866$.

$$0,866 \simeq \frac{5}{AB}$$

$$0,866 \times AB \simeq 5$$

$$AB \simeq \frac{5}{0,866}$$

$$AB \simeq 5,77 \, \mathrm{cm} \, .$$