4) Médiane et étendue

Définition.

Les valeurs d'une série statistique rangées par ordre croissant, la médiane est un nombre M tel que

- la moitié des valeurs de la série sont inférieures ou égales à M,
- \bullet la moitié des valeurs de la série sont supérieures ou égales à M.

En pratique,

- Si l'effectif est impair (2n+1), alors M est la (n+1)-ième valeur;
- Si l'effectif est pair (2n), alors M est la moyenne de la n-ième valeur et de la (n+1)-ième valeur.

Exemple.

Cherchons la médiane de la série (déjà ordonnée) :

L'effectif total est 9 et 9 est impair, $9 = 2 \times 4 + 1$ (donc n = 4). Donc la médiane M est la (4 + 1)-ième valeur, c'est-à-dire la cinquième :

$$M = 12$$

$$\underbrace{4;5;5;7}_{4 \text{ valeurs}}; 12;\underbrace{13;16;17;59}_{4 \text{ valeurs}}.$$

Exemple.

Cherchons la médiane de la série (déjà ordonnée) :

L'effectif total est 6 et 6 est pair, $6 = 2 \times 3$ (donc n = 3). Donc la médiane M est la moyenne des $3^{\rm e}$ et $4^{\rm e}$ valeur.

$$M = \frac{13 + 14}{2} = 13,5$$

$$\underbrace{6;7;13}_{3 \text{ valeurs}};\underbrace{14;15;19}_{3 \text{ valeurs}}.$$

Définition.

L'étendue d'une série statistique est la différence entre la plus grande et la plus petite des valeurs de la série.

5) Fréquences

Définition.

La fréquence d'une valeur dans une série statistique est l'effectif de cette valeur divisé par l'effectif total.

Exemple.

Voici les notes obtenues au dernier DS par 20 élèves de troisième :

Note	0	5	6	8	9	10	13	14	15	17	18
Effectif	2	1	1	2	2	1	1	3	5	1	1

- La fréquence de la note 14 est $\frac{3}{20} = 0,15$.
- La fréquence de la note 15 est $\frac{5}{20} = 0.25$.

Remarques.

- La fréquence est toujours un nombre entre 0 et 1.
- On exprime souvent une fréquence sous la forme d'un pourcentage. Par exemple, 0.15=15 %, 0.125=12.5 %.

Astuce.

On considère un groupe d'effectif g dans une population d'effectif total t. Si l'on note f la fréquence du groupe, alors on a : $f = \frac{g}{t}$, mais aussi $g = f \times t$ et $t = \frac{g}{f}$.

Pour retenir ces trois formules, on peut dessiner un triangle :

Quand on veut calculer l'un des trois nombres, g, f ou t, on cache le nombre qu'on cherche et l'opération que l'on veut faire apparaît.

Pour calculer la fréquence f:

On lit $\frac{g}{t}$.

Pour calculer l'effectif g du groupe :

On lit $f \times t$.

Pour calculer l'effectif total t:

On lit $\frac{g}{f}$.

6) Statistiques et rassemblements

Propriété.

Lorsque l'on réunit deux populations, dans lesquelles on a étudié le même caractère (le même groupe), les fréquences ne s'ajoutent pas.

Exemple.

Dans une classe de quatrième, il y a 25 élèves. Parmi eux, 9 sont nés après le 1^{er} août.

Dans cette classe de 4° de l'exemple précédent, il y a 15 filles et 10 garçons. Parmi les 15 filles, seules 3 sont nées après le 1° août, alors que c'est le cas de 6 garçons.

- Le pourcentage de filles nées après le 1^{er} août est donc $\frac{3}{15} = 0.2 = 20\%$.
- Le pour centage de garçons nés après le 1er août est $\frac{6}{9}\simeq 0{,}66=66\%.$

Le pourcentage d'élèves de la classe nés après le 1^{er} août n'est pas 86%, c'est $\frac{9}{25} = 0.36 = 36\%$.