TP: LA MATURATION DE L'ARNM

Nous avons déterminé qu'un gène permettait la transcription d'un ARNm lui-même à l'origine de la synthèse d'une protéine par traduction.

Or dans le cas de l'espèce humaine, le génome est constitué d'environ 25 000 gènes, mais le nombre d'ARNm est supérieur à 100 000, soit environ 4 fois plus.

Problème: Comment expliquer cette différence?

Hypothèse testée :

Activité 1 En cas de non disponibilité de salle info se reporter au document 1p46

Utiliser des techniques : Exploiter des simulations et/ou modèles

Avec le logiciel Anagène, ouvrir le fichier HB-Beta.edi.

Comparer les séquences du gène Hb-Beta et de l'ARN – Prémessager.

Choisissez « Traiter », « comparer les séguences », « alignement avec discontinuité ».

1. Que constatez-vous ?

Effectuez la même opération avec les séquences ARN-prémessager et ARNm-HB-Beta

- 2. Que constatez-vous?
- 3. Justifiez l'affirmation suivante : « Chez les eucaryotes, un gène est constitué de séquences codantes et de séquences non codantes ».

Traduire des informations par un schéma

4. Déterminez les modifications que subit un ARN pré-messager lors de sa maturation en ARN messager puis schématiser le passage de l'ARN pré-messager en ARN messager.

Complétez votre schéma en vous aidant du vocabulaire des informations suivantes :

Après la transcription, l'ARN pré-messager en cours de formation subit un épissage :

- Des portions d'ADN appelées introns sont éliminées ;
- Les autres portions appelées exons sont liées les unes aux autres pour former l'ARN messager qui sera exporté vers le cytoplasme.

Activité 2 : (si le temps)

le gène CGRP (Calcitonin Gene Related Product)


Le gène est situé sur le chromosome 11. Il s'exprime dans les **cellules C de la thyroïde** où il code pour une hormone, la **calcitonine**, intervenant dans la régulation de la calcémie (hormone hypocalcémiante). Il s'exprime aussi dans de nombreux neurones du système nerveux central et périphérique où il code pour un neuromédiateur, le **CGRP**.

Calcitonine et CGRP ont des rôles physiologiques différents. C'est donc l'exemple d'un gène qui code pour deux protéines différentes suivant le type de cellules où il s'exprime.


Ce gène comprend 6 exons et 5 introns.

Dans les cellules de la thyroïde, l'ARN messager résultant de l'expression du gène est constitué par l'union des exons 1 à 4. Le système d'épissage est tel que les exons 5 et 6 ne se retrouvent pas dans l'ARNm. Dans les neurones, l'ARNm résultant de l'expression du gène est formé par l'union des exons 1, 2, 3, 5 et 6. Il résulte donc d'un épissage qui a fait disparaître l'exon 4. On voit donc que le gène est épissé différemment dans les deux types cellulaires.

En vous aidant du schéma ci-dessous et du texte ci-dessus et compléter le schéma cicontre.

Épissage alternatif tissu dépendant conduisant à deux polypeptides aux fonctions différentes : épissage du gène CGRP

